PHYSICAL REVIEW E, VOLUME 63, 036110
Noise properties in the Nagel-Schreckenberg traffic model
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The jamming transition in the stochastic traffic cellular automaton model of Nagel and Schreckenberg is
examined. The behavior of the power spectrum is analyzed. Numerical results are presented. Satisfactory
analytical approximations are established in both low frequency and high frequency regions. The intrinsic
traffic states are revealed in the middle frequency range. A signaturd efoide is observed at the critical
density of the transition.
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|. INTRODUCTION 7.5m and one time step corresponds to approximately 1 sec
[5]. In the following, we will assume these parameters.
The cellular automaton approach to traffic flow has at-

tracted much attention from physicists recertly. Instead
of equations, the underlying dynamics is governed by a IIl. POWER SPECTRUM
group of update rules applied at discretized time steps. These \ye considerN cars moving on a road df sites. As a
models are suitable for computer simulations and much nuperiodic boundary condition is assumed, the global density
merical work have been reportg@]. Many features ob- ,— N/ is a conserved quantity. We then study the fluctua-
served in real traffic can be captured by a few simple rulestions of the local density. A small section of the road is
The real time simulation of urban traffic becomes accessiblgesignated as the observation post, which has a length of
[3]- In contrast, only few analytical results are knoWH.  sjtes andvl <L. The time serie§(t) is recorded as the num-
Thus it would be interesting to further study the analyticalper of cars on the post at tinte The typical behavior of the

properties of these cellular automaton models. _ time seriesS(t) is shown in Fig. 1. At smalp, the local
The Nagel-Schreckenberg traffic model is essentially gjgnsity has only a small fluctuation around its average value,
model of traffic flow on a single-lane highw4§]. The main o “the global density. At largg, the local density can as-
features of trafﬂc flow can be well reproduced, such as thg me a large value as traffic jams emerge. A much larger
fundamental diagram, backward moving shock waves, angcation is then observed. The power spectrfw) is
phase separation. As the density increases, traffic jamsefined by the Fourier transform
emerge spontaneously. On crossing a critical density, the
transition between free flow and jammed states can be ob-
served, which has been a focus of traffic studies. Several 1 (ot 2
attempts have been made to investigate the properties of the Plw)= T tzl S(t)e'” ' @
transition, such as using the relaxation tifil§, headway
distributions[7], density correlation$8], and structure fac-
tors[9]. However, it is still not clear whether the transition where(---) denotes the average over different initial con-
can be described as a critical phenomenon. In this paper, wigurations andl>1 is the duration of observation. In this
study the noise properties of the model by analyzing thevork, a system of. =10° andM =20 is taken. A time series
power spectrum. Numerical results are presented and analytf T=10" is recorded with the first TOdiscarded; the aver-
cal approximations are also established. age is taken over forandom initial configurations.

In the basic model, the road is divided irtocells. Each
cell can be either empty or occupied by a car with an integer )
speedy €{0,1, . .. pmax, Wherev .y is the speed limit. At A. Low density phase
each time step, the configuration Nfcars is updated by the The typical behavior of the power spectrum at low density
following four rules, which are applied in parallel to all cars. is shown in Fig. 2. Oscillations with increasing amplitude are
The first rule is acceleration. If the speed of a car is lowerobserved in the low frequency region. An abrupt dip fol-
thanvhax, the speed is advanced by 1. The second rule ifowed by a small hump is observed in the high frequency
slowing down due to other cars. If a car fthempty cells in  region. In between these two ends, a flat distribution is ob-
front of it and a speed larger thah the speed is reduced to served.
d. The third rule is randomization, which introduces a noise In the low frequency region, the power spectrum reveals
to simulate the stochastic driving behavior. The speed of &he long range behavior of the system, which is controlled by
moving car ¢=1) is decreased by 1 with a braking prob- the global density. As p<1, the correlations between cars
ability p. In the fourth rule, the position of a car is advancedcan be neglected. Thus the cars can be taken as randomly
by its speed . Iterations over these simple rules already givedistributed on the road with an expectation value determined
realistic results. Real traffic data can be well described by théy the density. The expectation value of the number of cars
parameters ,.,=5 andp=0.5, where the length of a cell is within M sites is then given by
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FIG. 1. Time seriesS(t) at low densityp=0.02 (a) and high
densityp=0.2 (b).

M
<5“)>:§o iCMpi(1—p)M=Mp, 7))

where CiMZM!/[i!(M—i)!] is the binomial factor. The
equal-time correlation is given by

M
(SS()) =2, i?CMp'(1-p)M ' =Mp+M(M—1)pZ
i=0
)
similarly, the different-time correlation is given by

M
(s(t)-s(t")) ggu[c (1=p)M]

X[Ci'pl(1=p)" ]
=M?p?. (4)

)

Thus the power spectrum is given by

2 T

+1 > S(t)sinwt
t=1

1 T
P(w)= — <{E S(t)coswt

1 1
= F(S(0)-S0) + —(S()-S(1))

X >, (coswt coswt’ + sinwt sinwt’)
t#t’
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Power Spectrum

Frequency

FIG. 2. Power spectrunP(w) at low densityp=0.02 (solid
line). Analytical approximations for the low frequency region, from
Eq. (5), and the high frequency region, from E®), are shown as
the bold gray line and the dotted line, respectively.

_ Mp(1-p)  M?p?si(wT/2)
T T2 sirX( w/2)

®

The low frequency part of the numerical results shown in
Fig. 2 can be fairly well reproduced by the above analytical
expression. In the very low frequency regians<1/T, Eq.

(5) saturates at a value ®fi>p?. The amplitude of oscilla-
tions is given byM2p?/[ T2 sirf(w/2)], which increases with
decreasingy; the period of oscillationgin frequencyw) is
27/T. As the frequency increases=0.1, the oscillations
diminish and Eq.5) converges to the valuM p(1—p)/T.
However, the numerical results show that the spectrum con-
verges to a different value, which can be obtained by the
following high frequency approximation.

In the high frequency region, the power spectrum probes
the short range behavior of the system, which is then con-
trolled by the length of the observation pddt As the den-
sity is low, each car is expected to drive with the maximum
speedv .- It takes approximately a time of=M/v 54 1O
pass the observation post, i.e., if a car enters the post at time
to, it leaves the post at timg +t;, and gives a signal

1, te<t<ty+t;

S(t)= (6

0 otherwise.

On average, the temporal separation between two cdgs is
=1/(pvmay - The power spectrum for observing a single car
within the timet, is then given by

036110-2



NOISE PROPERTIES IN THE NAGEL-SCHRECKENBERG . . . PHYSICAL REVIEWGB 036110

2
+

ty 2

= sinw(t+tg)
t, =1

1
— > cosw(t+tp)
t) =1

Plw)=

()

we note that the above distribution is independent,0fAs

the cars are taken to be independent of each other, the pow
spectrum for a longer tim& can be taken as an incoherent
sum of the above expression and is given by

2

148
—E sinwt

148
— > coswt
t, =1

P(w)= 2
(w)_T t, =1

)

2
t2
+ =
T

At low frequency,w<<1/t;, Eq. (8) saturates to a value of
(t)?/(t, T)=M2p/(Tvmay, Which reproduces the numeri-
cal result. In Fig. 2, we haveM =20, v,ax=5, and p
=0.02; thust;=4 andt,=10. The power spectrum reduces
to

Power Spectrum

2
P(w)= 5—T[cos{w/2)+cos{3w/2)]2. (9)
, . 10° | ] .
The saturated value at low frequency is 8{5The dip is 10% 10° 102 10" 10° 10’
located at w=w/2~1.57. The hump is located at
= cos 1(—2/3)~2.30 with a height oP(»)~0.119T. It is Frequency

interesting to note that without fine tuning the details, e.g.,

by cqnsiderir)g the effect of rand.om brgking, the WhOIQ struc—"ne)_ Analytical approximation for low frequency region is shown
ture in the high frequency part including the location of theas the bold gray line, from Eds5). The contribution from a single

dip and the height of the hump can be reproduced quite well,ge jam of J=200 is shown as the dotted line, from Ha1).
In summary, the power spectrum at low dengitgan be

analytically obtained. In the low frequency region, the ob-
served features are related to the global properties of th
system and controlled by the paramegerin the high fre-

FIG. 3. Power spectrun®P(w) at high densityp=0.2 (solid

moves backward with a fixed speed of 1. Then the time
Series becomes

guency region, the local properties determine the observed t—tg, to<t<to+M

structure and the relevant parameteMsAs we are inter-

ested in the transition of traffic states, we shall look into the S(t) = M, ot M<t<to+J (10)
distributions between these two ends, ewg0.1 in Fig. 2. J+M—t+ty, tr+I<t<tyg+J+M

As the observation duratiom increases, the oscillations in 0 otherwise

the low frequency region will be shifted to still lower fre-
guency; while the dip and hump in the high frequency region

still have the same locations. Thus the power spectrum WiIY\Ih.ereto is the time Whe.” the jam beglr)s to pass the post,
which has a length o sites. After carrying out the calcu-

be dominated by a flat distribution, which is a characteristicI . -
of free flow. ation, the power spectrum can be explicitly expressed as

. . 6
B. High density phase P(w)= Sir(wM/2)sir?(»J/2). (11)

. . . 2 4

In contrast, the typical behavior of the power spectrum in To
the high density phase is shown in Fig. 3. The structures of
the dip and hump in the high frequency region can still beAt low frequency, the spectrum saturates to a value of
observed, but the oscillating behavior at the low frequencyM2J?/T?; at high frequency, it decays like 16 §wM/2)
region is strongly suppressed. Between these two ends, the(/T?0?), whereJ>M is assumed. In comparison to the
power spectrum is significantly enhanced. The flat distriburandom distribution of Eq(5), the appearance of a wide jam
tion that characterizes free flow can no longer be observedenhances the power spectrum prominently arouwnew/J

As the density increases, traffic jams begin to emerge(see Fig. 3. As the length of the jam increases, the enhance-
While a car moves forward with various speeds, a wellment shifts to a lower frequency. In the model, the traffic jam
formed jam moves backward with a fixed speed. The enemerges spontaneously and the length of the Jamnot a
hancement of the power spectrum can be attributed to theontrolled parameter. With the same global dengitythe
appearance of a single wide jam on the road. To simplify thestochastic noise of the model will lead to different sizes of
analytical approximation, we assume a nhumbef cars are jam even for the same initial configuration. The resulting
crowded bumper to bumper to form a wide jam and the jandistribution, shown in the middle region of Fig. 3, can be
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10? | | | I Nj 2
P(w)= Sif(wM/2)| N, e“li(1—e)]| |
T?w* =1
10" + (12)
. whereN; is the number of jams and the indgxuns over
1071 T different jams with lengtld; and passing the post&tt;. A
normalization factor\ is introduced to have the correct de-
10" 4 1 scription of the global density, i.e.,
9]
§ 1071 4 N=pT/ j§=:1 J;. (13
g
S —
£ 10°4 1 The saturated value in the very low frequency limit is fixed
to reproduce the numerical result. The envelope of oscilla-
tions then constitutes a prediction to be compared with the
1074 T data. Neither the number of jarhg nor the length of jams,
is a conserved quantity. With the simple prescription of uni-
e 1 form fluctuations ovexN;)=20 and(J;)=500 atp=0.5,
the typical behavior in Fig. 4 can be fairly well reproduced.
‘ In the above approximation, the underestimation in the
10° | . i very high frequency region is due to the neglect of free mov-

T
10 10° 107 10" 10° 10' ing cars. To estimate the contribution from the free moving
cars, we adapt the formulation of the low density results in
Eq. (8). As the density increases, the speeds of cars decrease
FIG. 4. Power spectrunP(w) at high densityp=0.5 (solid  accordingly. The value of;, which denotes the time for a

line). The result from the multijam approximation is shown as theCar to pass the post, is expected to increase significantly. The
bold gray line, from Eq(12). The contribution from free moving POWer spectrum is then given by

cars is shown as the dotted line, from Ej4).

Frequency

2
+

ty

P(w)= ./\/l[ [ 21 coswt
t=

ty 2
) ) o 2 Sinwt} ]
taken as an incoherent sum over various weightings of the =1
single-jam result around=200.
In the above approximation, free moving cars are totally _sinf(ety/2)
neglected. Thus neither the very low frequency limit nor the N sirt(w/2)
very high frequency limit of the spectrum can be well de-
scribed by Eq(11). As mentioned before, the low frequency where the normalization factaM is introduced because
limit is solely determined by the global densjty Thus the  only a fraction of cars are moving freely; the dependence on
prediction from Eq.(5) is still valid. The saturated value of T andt, is absorbed into the factokt. With M=1/(Tt,),
Eq. (12) will now set a lower cutoff to the oscillating ampli- the above formula reduces to E®). In the low frequency
tude(see Fig. 3. When one explores the long range proper-limit, Eq. (14) saturates to a value of4(t;)?. In the high
ties in the low frequency region, the emergence of a singlérequency region, oscillations with decreasing amplitude are
wide jam will strongly reduce the randomness of the systenpbserved. We simply take the average speed to be 1, in con-
and thus lead to suppression of the oscillations. trast to the maximum speed of 5 in the low density case.
A simple estimation also shows that only a small fractionThen the value ot; becomes 20. The factok! is deter-
of cars are within the wide jam. For example, when 0.2 mined by fixing the data ab~0.1, around which a change
andL=10", only 1% of cars are within the jam df=200;  of slope is observed. The result is shown in Fig. 4. The
the remaining 99% of cars are still free moving. Thus, wherenvelope of the oscillations matches the data nicely. If one
one explores the short range properties in the high frequendyirther introduces fluctuations over the speed, an incoherent
region, the characteristic of free flow will still be present, sum is expected. The rapid oscillations of Etd), resulting
i.e., the structures of dip and bump can still be observed. from the numerator sfwt;/2), will be smeared out. The
As the density further increases, more jams emerge. Thesmooth distribution of the data can then be reproduced.
oscillations in the low frequency region are somewhat re-
stored; the characteristic of free flow in the high frequency Il DISCUSSION
region disappear&ee Fig. 4. A multijam configuration be-
comes essential to have a satisfactory approximation of the In this paper, we use the power spectrum to study the
power spectrum. Assuming a series of well formed jamsoise properties of the Nagel-Schreckenberg traffic model.
moving backward with the same speed, the single-jam forBesides the numerical work, analytical approximations have
mulation in Eq.(11) can be extended to a multijam configu- also been established. In the low frequency region, the spec-
ration as follows: trum probes the long range behavior of the system. The most

(14)
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cutoff and results in a more rapid drop of the spectrum.
When the density is low, the speed is high. A car passes the

--------- p=0.08 post within a short time and leaves a short pulse to be ob-
b =0.07 served, which results in the interesting signature of the dip
’ and hump. As cars drive at the speed limit, the variation of

- —-p=0.06

speeds can be neglected. The signals of dip and hump from
different cars are superimposed and become a clear signature
of the power spectrum in the low density phase. As the den-
sity increases, the speed decreases and the observed pulse
elongates. The signal of dip and hump appears at a lower
frequency. However, the variation of speeds becomes signifi-
cant and the structure of dip and hump is smeared out; thus a
monotonic decrease of the spectrum results in the high den-
sity phase. These features are mainly controlled by the length
of the postM and are independent of the system dizeéA\s

the system size increases, these features can be observed at

the same frequency.

The low and high frequency regions of the power spec-
trum reveal structures on the scalesand M, respectively.
However, we are interested in the intrinsic traffic states that
should be revealed in the middle frequency range, i.e.,
aroundw~ 1071 for a system of_=10°. When the density is
low, a flat distribution is observed, which can be taken as
white noise characterizing the free flow. When traffic jams
emerge as the density increases, the power spectrum is en-
hanced predominantly at the low frequency end, while the
high frequency end remains unchanged. Thus the flat distri-
bution becomes a steeper drop ané?Hependence is ob-
important parameter is the density In the very low fre- served, which characterizes the jammed states. As the den-
quency limit,w<10 4 in a system olL=10", the spectrum Sity increases, the slope of the power spectrum changes from
saturates to a value d¥1%p?. As the frequency increases, 0 to —2, which characterize the randomness of free moving
oscillating behavior is observed. When the density is low, thecars and well formed jams, respectively. It is interesting to
oscillations can be attributed to the randomness of the fregote that the change of slope is not gradual, but occurs sud-
moving cars. As the density increases, a traffic jam begins tdenly at a critical density. Thp dependence of the power
emerge. Around the onset of the traffic jam, the first widespectrum is shown in Fig. 5. A clear signature ab Hepen-
jam to emerge significantly reduce the randomness of thdence, also known as flhoise, is observed at the critical
system. Thus the oscillating behavior diminishes accorddensity. In this work, the observedfIfoise is sustained only
ingly. As the density increases further, the number of jamdor a decade of the frequenésee Fig. $. However, from the
also increases. The randomness of the system is then eabove analysis, it should be clear that thé hbise will
hanced. The restored oscillating behavior is now attributed tdbecome the dominant signature if one further increases the
the randomness of the multijam configurations. The fre-system size. The value of critical density obtaingd,0.08,
guency dependence of these features is directly related to th& consistent with that from other approaches. We expect this
system size. As the system size increases, the saturated fi@gnature could be used as a convincing definition of the
guency decreases and the oscillating behavior shifts to @ansition between free flow and jammed state$. ridise
lower frequency. Thus for an infinite system such oscillatingoccurs widely in many other systems and is considered to be
behavior can be neglected. a mysterious phenomenon. In addition to traffic related prob-

In the high frequency region, the spectrum reveals thdems, further research into the Nagel-Schreckenberg traffic
short range behavior of the system. The most important panodel may lead to a more precise understanding of systems
rameter becomes the length of the pbktwhich provides a exhibiting 1f noise.

10° 107 10 10°
Frequency

FIG. 5. Power spectrurR(w) for various values of density. The
characteristic slopes of 1 and—2 are marked by bold gray sec-
tions.
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